تعیین عوامل موثر بر عملکرد پسته با استفاده از روش کرامر و الگوریتم هیبرید ژنتیک- شبکه ی عصبی مصنوعی

پایان نامه
چکیده

هدف اصلی پژوهش حاضر، مدل‏سازی عملکرد پسته به‏وسیله ی مدل های شبکه‏ی عصبی مصنوعی و رگرسیون چند‏متغیره ی خطی در بخش هایی از اراضی پسته کاری شهرستان های رفسنجان و انار می باشد. برای این منظور، 142 نقطه ی مشاهداتی به صورت تصادفی مد نظر قرار گرفت. برداشت نمونه‏های خاک از سه عمق‏ صفر تا 40، 40 تا 80 و 80 تا 120 سانتی‏متری هر نقطه‏ی مشاهداتی انجام شد. هم چنین، از آب چاه تلمبه‏ای که درختان پسته ی موجود در هر نقطه‏ی مشاهداتی با آن آبیاری می‏شدند، نمونه ی آّب آب برداشت شد. به علاوه، نمونه‏برداری برگ از شاخه‏های بدون بار درختان انجام گرفت. اطلاعات مدیریتی مورد نیاز و مقدار عملکرد محصول نیز توسط طراحی و تکمیل یک پرسش نامه تأمین گردید. نتایج اعتبارسنجی مدل ها نشان داد که مقدار ضریب تبیین مدل شبکه‏ی عصبی مصنوعی (هم با استفاده از متغیرهای انتخاب شده توسط الگوریتم ژنتیک و هم با متغیرهای انتخاب شده توسط آزمون کرامر) نسبت به رگرسیون چند متغیره ی خطی از دقت بالاتری برخوردار بود.

منابع مشابه

عوامل موثر بر تمایل به ترک سازمان با استفاده از الگوریتم های مبتنی بر شبکه عصبی و ژنتیک چند هدفه

بهبود بازدهی سرمایه انسانی از آنجا که می تواند نقش موثری در کارایی سازمان داشته باشد، همواره یکی از موضوعات پژوهش بوده است. میزان تمایل به ترک سازمان یکی از عوامل تأثیرگذار بر کارایی سرمایه انسانی است که آن را می‌توان با استفاده از الگوهای درون داده­ای، شرایط حاکم بر سازمان و بررسی عوامل مؤثر بر آن پیش­ بینی کرد. به همین منظور، از الگوریتم‌های هوشمند مبتنی بر شبکه عصبی و الگوریتم ژنتیک چندهدفه ...

متن کامل

شناسایی ترکیب غیرمسلط عوامل کنترلی در مسئله ی چندپاسخه با استفاده از شبکه ی عصبی مصنوعی و الگوریتم ژنتیک

شروع{چکیده} یافتن بهترین ترکیب عوامل کنترلی برای بهینه سازی توأمان چندین متغیر پاسخ که اکثراً با یکدیگر در تضادند، یکی از مهم ترین نیازهای مسائل صنعتی است. روش معمول برای حل این گونه مسائل استفاده از رگرسیون چندجمله یی برای شناسایی روابط بین عوامل کنترلی و متغیرهای پاسخ است، در حالی که شبکه ی عصبی مصنوعی در حالاتی که این روابط پیچیده باشد قابلیت مناسب تری از خود نشان می دهند. در این نوشتار، برخل...

متن کامل

تعیین ویژگی‌های مؤثر بر پایداری ساختمان خاک‌های مناطق خشک با استفاده از الگوریتم ترکیبی ژنتیک-شبکه عصبی مصنوعی

پایداری خاکدانه­ها به‌عنوان یکی از کلیدی­ترین شاخص­های کیفیت فیزیکی خاک، بیان‌گر قدرت نسبی خاک در برابر نیروهای فرساینده و تخریب مکانیکی است. در این پژوهش، به‌منظور شناسایی یک زیرمجموعه از مهم‌ترین ویژگی‌های مؤثر بر شاخص میانگین وزنی قطر خاکدانه‌ها (MWD)، از الگوریتم ترکیبی ژنتیک-شبکه عصبی مصنوعی (GA-ANN) استفاده گردید. افزون بر آن، قابلیت شبکه­های عصبی مصنوعی (ANNs) و رگرسیون چند متغیره خطی (M...

متن کامل

مدل‌سازی فرایند تبدیل خشک متان به‌کمک پلاسما با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک

 پیش‌بینی فراورده‌های (هیدروژن و کربن مونوکسید) تبدیل خشک متان به‌کمک پلاسما در فشار جوی با استفاده از شبکه عصبی مصنوعی شبیه‌سازی شد. داده‌های تجربی موردنیاز برای مدل‌سازی شبکه عصبی مصنوعی از یک واکنشگاه پلاسمایی تخلیه کرونا جمع‌آوری شد. اثر عامل‌های فرایندی (توان تخلیه پلاسما، دبی خوراک ورودی) بر کارایی تبدیل متان و گزینش‌پذیری نسبت به فراورده‌های مورد بررسی قرار گرفتند. شبکه پیش‌خور با الگوری...

متن کامل

مدل سازی خشک کردن اسمزی زردآلو با استفاده از الگوریتم ژنتیک - شبکه عصبی مصنوعی

ایران از نظر تولید زردآلو در جهان مقام دوم را دارد و مطالعه عوامل موثر بر خشک کردن این میوه و مقدار تاثیر آنها امری ضروری می باشد. لذا در این مطالعه تاثیر دمای محلول اسمزی در محدوده °C 25 تا °C 65، در مدت زمان 30 تا 120 دقیقه و غلظت محلول اسمزی در محدودۀ 30 تا 60 درصد (وزنی/وزنی) بر پارامترهای کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد در طی خشک کردن اسمزی زردآلو مورد بررسی...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه ولی عصر (عج) - رفسنجان - دانشکده کشاورزی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023